this post was submitted on 01 Aug 2023
319 points (97.1% liked)
Technology
59091 readers
5373 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Superconductors in general have no electrical resistance. That's basically electricity's friction.
Superconducting materials make the strongest electromagnets, they have big applications in quantum stuff (which I don't properly understand to try explaining), and they're used in something called a Tokamak, a specific kind of fusion reactor. They're useful in anything where electrical resistance is bad in general. When electricity is resisted, we lose some and get heat, so a superconducting wire would lose none and never heat up as a result of resistance.
Superconductors traditionally have to be super freaking cold. A lot of these applications can only be done with liquid nitrogen or even colder things, keeping them superconducting. You can do some things with pressure to help out with that, but the point is it's not easy to keep a material superconducting. This effort translates to costs, often prohibitive ones, as you need to actively keep these materials from collecting any heat.
If this research pans out, though, this kind of superconductor will just work at standard temperature and pressure. These could go into standard circuits, they can sit around without bleeding money on upkeep, they're very cool.
People are comparing them to transistors in part because before transistors we had vacuum tubes. Vacuum tubes do the same thing as a transistor, but they're effectively a lightbulb. They burn out, they produce heat, and they didn't miniaturize. Transistors were magic at the time because we could do so much more with them than vacuum tubes, and for superconducting metals, this is the same.
Thanks for the explanation. So, this means we are another step closer to quantum computers for example?
I'm trying to grasp on this concept and how we could see this in our daily lives. Better batteries? I thought about that because they get hot when charging but not sure if it's because of the resistance. Going into standard circuits means we'll have better SoCs? better integrated circuits? Faster computers or phones?
Im trying to think about a daily life application but maybe it won't have a direct impact on that area, maybe it's more about facilitating research that will eventually turn into daily life stuff?
One thing that you'll definitely observe in daily life is the development of fusion reactors. They're significantly safer than regular nuclear reactors (which run on fission), and also a lot cheaper (theoretically). The current downside to fusion reactors is that up until this point, it usually takes up more energy to run it than the energy that gets produced. So in other words, it doesn't actually generate enough energy to make it worth building. Most of the energy spent is trying to keep the magnets in the reactor cold enough to function. Since room temperature superconductors should function at room temperature, there will be no need to keep them cold, so a lot of the energy spent keeping the magnets cold will become unnecessary. This will significantly improve the development of fusion reactors, to the point where it is possible that we may even see fusion reactors on our energy grid in our lifetimes. Basically, if this claim is true, you can expect that energy costs will become virtually negligible and the world will almost completely run on renewable energy
Well I really hope this is real then and more importantly it translates to cheap, clean energy