this post was submitted on 04 Aug 2024
200 points (96.3% liked)

Programming

17326 readers
252 users here now

Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!

Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.

Hope you enjoy the instance!

Rules

Rules

  • Follow the programming.dev instance rules
  • Keep content related to programming in some way
  • If you're posting long videos try to add in some form of tldr for those who don't want to watch videos

Wormhole

Follow the wormhole through a path of communities [email protected]



founded 1 year ago
MODERATORS
 

To accelerate the transition to memory safe programming languages, the US Defense Advanced Research Projects Agency (DARPA) is driving the development of TRACTOR, a programmatic code conversion vehicle.

The term stands for TRanslating All C TO Rust. It's a DARPA project that aims to develop machine-learning tools that can automate the conversion of legacy C code into Rust.

The reason to do so is memory safety. Memory safety bugs, such buffer overflows, account for the majority of major vulnerabilities in large codebases. And DARPA's hope is that AI models can help with the programming language translation, in order to make software more secure.

"You can go to any of the LLM websites, start chatting with one of the AI chatbots, and all you need to say is 'here's some C code, please translate it to safe idiomatic Rust code,' cut, paste, and something comes out, and it's often very good, but not always," said Dan Wallach, DARPA program manager for TRACTOR, in a statement.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 32 points 3 months ago

Key detail in the actual memo is that they're not using just an LLM. "Wallach anticipates proposals that include novel combinations of software analysis, such as static and dynamic analysis, and large language models."

They also are clearly aware of scope limitations. They explicitly call out some software, like entire kernels or pointer arithmetic heavy code, as being out of scope. They also seem to not anticipate 100% automation.

So with context, they seem open to any solutions to "how can we convert legacy C to Rust." Obviously LLMs and machine learning are attractive avenues of investigation, current models are demonstrably able to write some valid Rust and transliterate some code. I use them, they work more often than not for simpler tasks.

TL;DR: they want to accelerate converting C to Rust. LLMs and machine learning are some techniques they're investigating as components.