Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
The heat in the Earth's mantle and core comes from the gravitational potential energy of the original stellar dust clouds the Earth originally accreted from. So, geothermal energy mostly isn't. And there's also evidence that a few natural uranium deposits have undergone natural nuclear fission chain reactions. That one's a pretty negligible amount, though. Other than that, no, it all traces back to the sun.
Earth wouldn't have coalesced without the sun in the middle. Otherwise we'd still be a gas blob.
Nuclear materials were formed in supernovas. They wouldn't exist in the first place without a star.
Well, yeah, sure. But that star is not the Sun.
I mean, sure? It wouldn't be a gas blob, but it would be a very different system. But that still has nothing to do with it -- even if the gravity of the sun influences how the earth coalesces, it's still not where the thermal energy of the core came from. That came from the potential of the dust itself.
Which wouldn't have the potential if the larger sun didn't form first to create the gravity to allow the rest to form.
Star != Sun is just pointlessly pedantic. You're not trying to learn anything, just be a smartass.
This is simply incorrect. The gravitational potential of the body would be there regardless of what else is going on around it. And either way, the OP's question was not about some hypothetical where the sun doesn't exist, it's about where energy came from in the real world.
? The OP's question was literally "is there energy on earth that didn't come from the sun." I am not the one being pedantic here.