this post was submitted on 17 May 2024
202 points (93.5% liked)

Technology

59111 readers
3801 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 104 points 5 months ago (8 children)

"We invented a new kind of calculator. It usually returns the correct value for the mathematics you asked it to evaluate! But sometimes it makes up wrong answers for reasons we don't understand. So if it's important to you that you know the actual answer, you should always use a second, better calculator to check our work."

Then what is the point of this new calculator?

Fantastic comment, from the article.

[–] [email protected] 11 points 5 months ago (4 children)

Its not just a calculator though.

Image generation requires no fact checking whatsoever, and some of the tools can do it well.

That said, LLMs will always have limitations and true AI is still a ways away.

[–] [email protected] 9 points 5 months ago

It doesn't? Have you not seen any of the articles about AI-generated images being used for misinformation?

[–] [email protected] 8 points 5 months ago

It does require fact-checking. You might ask a human and get someone with 10 fingers on one hand, you might ask people in the background and get blobs merged on each other. The fact check in images is absolutely necessary and consists of verifying that the generate image adheres to your prompt and that the objects in it match their intended real counterparts.

I do agree that it's a different type of fact checking, but that's because an image is not inherently correct or wrong, it only is if compared to your prompt and (where applicable) to reality.

[–] [email protected] 6 points 5 months ago

The biggest disappointment in the image generation capabilities was the realisation that there is no object permanence there in terms of components making up an image so for any specificity you're just playing whackamole with iterations that introduce other undesirable shit no matter how specific you make your prompts.

They are also now heavily nerfing the models to avoid lawsuits by just ignoring anything relating to specific styles that may be considered trademarks, problem is those are often industry jargon so now you're having to craft more convoluted prompts and get more mid results.

[–] [email protected] 4 points 5 months ago

Image generation requires no fact checking whatsoever

Sure it does. Let's say IKEA wants to use midjourney to generate images for its furniture assembly instructions. The instructions are already written, so the prompt is something like "step 3 of assembling the BorkBork kitchen table".

Would you just auto-insert whatever it generated and send it straight to the printer for 20000 copies?

Or would you look at the image and make sure that it didn't show a couch instead?

If you choose the latter, that's fact checking.

That said, LLMs will always have limitations and true AI is still a ways away.

I can't agree more strongly with this point!

[–] [email protected] 10 points 5 months ago (1 children)

It's a nascent stage technology that reflects the world's words back at you in statistical order by way parsing user generated prompts. It's a reactive system with no autonomy to deviate from a template upon reset. It's no Rokos Basilisk inherently, just because

[–] [email protected] 2 points 5 months ago (1 children)

am I understanding correctly that it's just a fancy random word generator

[–] [email protected] 2 points 5 months ago

More or less, yes.

[–] [email protected] 5 points 5 months ago (1 children)

Some problems lend themselves to "guess-and-check" approaches. This calculator is great at guessing, and it's usually "close enough".

The other calculator can check efficiently, but it can't solve the original problem.

Essentially this is the entire motivation for numerical methods.

[–] [email protected] 2 points 5 months ago* (last edited 5 months ago)

In my personal experience given that's how I general manage to shortcut a lot of labour intensive intellectual tasks, using intuition to guess possible answers/results and then working backwards from them to determine which one is right and even prove it, is generally faster (I guess how often it's so depends on how good one's intuition is in a given field, which in turn correlates with experience in it) because it's usually faster to show that a result is correct than to arrive at it (and if it's not, you just do it the old fashion way).

That said, it's far from guaranteed faster and for those things with more than one solution might yield working but sub-optimal ones.

Further, merelly just the intuition step does not yield a result that can be trusted without validation.

Maybe by being used as intuition is in this process, LLMs can help accelerate the search for results in subjects one has not enough experience in to have good intuition on but has enough experience (or there are ways or tools to do it inherent to that domain) to do the "validation of possible results" part.

[–] [email protected] 5 points 5 months ago (1 children)

That's not really right, because verifying solutions is usually much easier than finding them. A calculator that can take in arbitrary sets of formulas and produce answers for variables, but is sometimes wrong, is an entirely different beast than a calculator that can plug values into variables and evaluate expressions to check if they're correct.

As a matter of fact, I'm pretty sure that argument would also make quantum computing pointless - because quantum computers are probability based and can provide answers for difficult problems, but not consistently, so you want to use a regular computer to verify those answers.

Perhaps a better comparison would be a dictionary that can explain entire sentences, but requires you to then check each word in a regular dictionary and make sure it didn't mix them up completely? Though I guess that's actually exactly how LLMs operate...

[–] [email protected] 2 points 5 months ago

It's only easier to verify a solution than come up with a solution when you can trust and understand the algorithms that are developing the solution. Simulation software for thermodynamics is magnitudes faster than hand calculations, but you know what the software is doing. The creators of the software aren't saying "we don't actually know how it works".

In the case of an LLM, I have to verify everything with no trust whatsoever. And that takes longer than just doing it myself. Especially because an LLM is writing something for me, it isn't doing complex math.

load more comments (4 replies)
[–] [email protected] 76 points 5 months ago

Altman going "yeah we could make it get things right 100% of the time, but that would be boring" has such "my girlfriend goes to another school" energy it's not even funny.

[–] [email protected] 63 points 5 months ago (13 children)

We not only have to stop ignoring the problem, we need to be absolutely clear about what the problem is.

LLMs don't hallucinate wrong answers. They hallucinate all answers. Some of those answers will happen to be right.

If this sounds like nitpicking or quibbling over verbiage, it's not. This is really, really important to understand. LLMs exist within a hallucinatory false reality. They do not have any comprehension of the truth or untruth of what they are saying, and this means that when they say things that are true, they do not understand why those things are true.

That is the part that's crucial to understand. A really simple test of this problem is to ask ChatGPT to back up an answer with sources. It fundamentally cannot do it, because it has no ability to actually comprehend and correlate factual information in that way. This means, for example, that AI is incapable of assessing the potential veracity of the information it gives you. A human can say "That's a little outside of my area of expertise," but an LLM cannot. It can only be coded with hard blocks in response to certain keywords to cut it from answering and insert a stock response.

This distinction, that AI is always hallucinating, is important because of stuff like this:

But notice how Reid said there was a balance? That’s because a lot of AI researchers don’t actually think hallucinations can be solved. A study out of the National University of Singapore suggested that hallucinations are an inevitable outcome of all large language models. **Just as no person is 100 percent right all the time, neither are these computers. **

That is some fucking toxic shit right there. Treating the fallibility of LLMs as analogous to the fallibility of humans is a huge, huge false equivalence. Humans can be wrong, but we're wrong in ways that allow us the capacity to grow and learn. Even when we are wrong about things, we can often learn from how we are wrong. There's a structure to how humans learn and process information that allows us to interrogate our failures and adjust for them.

When an LLM is wrong, we just have to force it to keep rolling the dice until it's right. It cannot explain its reasoning. It cannot provide proof of work. I work in a field where I often have to direct the efforts of people who know more about specific subjects than I do, and part of how you do that is you get people to explain their reasoning, and you go back and forth testing propositions and arguments with them. You say "I want this, what are the specific challenges involved in doing it?" They tell you it's really hard, you ask them why. They break things down for you, and together you find solutions. With an LLM, if you ask it why something works the way it does, it will commit to the bit and proceed to hallucinate false facts and false premises to support its false answer, because it's not operating in the same reality you are, nor does it have any conception of reality in the first place.

[–] [email protected] 14 points 5 months ago (11 children)

This right here is also the reason why AI fanboys get angry when they are told that LLMs are not intelligent or even thinking at all. They don't understand that in order for rational intelligence to exist, the LLMs should be able to have an internal, referential inner world of symbols, to contrast external input (training data) against and that is also capable of changing and molding to reality and truth criteria. No, tokens are not what I'm talking about. I'm talking about an internally consistent and persistent representation of the world. An identity, which is currently antithetical with the information model used to train LLMs. Let me try to illustrate.

I don't remember the details or technical terms but essentially, animal intelligence needs to experience a lot of things first hand in order to create an individualized model of the world which is used to direct behavior (language is just one form of behavior after all). This is very slow and labor intensive, but it means that animals are extremely good, when they get good, at adapting said skills to a messy reality. LLMs are transactional, they rely entirely on the correlation of patterns of input to itself. As a result they don't need years of experience, like humans for example, to develop skilled intelligent responses. They can do it in hours of sensing training input instead. But at the same time, they can never be certain of their results, and when faced with reality, they crumble because it's harder for it to adapt intelligently and effectively to the mess of reality.

LLMs are a solipsism experiment. A child is locked in a dark cave with nothing but a dim light and millions of pages of text, assume immortality and no need for food or water. As there is nothing else to do but look at the text they eventually develop the ability to understand how the symbols marked on the text relate to each other, how they are usually and typically assembled one next to the other. One day, a slit on a wall opens and the person receives a piece of paper with a prompt, a pencil and a blank page. Out of boredom, the person looks at the prompt, it recognizes the symbols and the pattern, and starts assembling the symbols on the blank page with the pencil. They are just trying to continue from the prompt what they think would typically follow or should follow afterwards. The slit in the wall opens again, and the person intuitively pushes the paper it just wrote into the slit.

For the people outside the cave, leaving prompts and receiving the novel piece of paper, it would look like an intelligent linguistic construction, it is grammatically correct, the sentences are correctly punctuated and structured. The words even make sense and it says intelligent things in accordance to the training text left inside and the prompt given. But once in a while it seems to hallucinate weird passages. They miss the point that, it is not hallucinating, it just has no sense of reality. Their reality is just the text. When the cave is opened and the person trapped inside is left into the light of the world, it would still be profoundly ignorant about it. When given the word sun, written on a piece of paper, they would have no idea that the word refers to the bright burning ball of gas above them. It would know the word, it would know how it is usually used to assemble text next to other words. But it won't know what it is.

LLMs are just like that, they just aren't actually intelligent as the person in this mental experiment. Because there's no way, currently, for these LLMs to actually sense and correlate the real world, or several sources of sensors into a mentalese internal model. This is currently the crux and the biggest problem on the field of AI as I understand it.

[–] [email protected] 3 points 5 months ago (1 children)

That's an excellent methaphor for LLMs.

[–] [email protected] 2 points 5 months ago (2 children)

It's the Chinese room thought experiment.

load more comments (2 replies)
load more comments (10 replies)
[–] [email protected] 11 points 5 months ago (4 children)

I fucking hate how OpenAi and other such companies claim their models "understand" language or are "fluent" in French. These are human attributes. Unless they made a synthetic brain, they can take these claims and shove them up their square tight corporate behinds.

load more comments (4 replies)
[–] [email protected] 3 points 5 months ago (1 children)

I'm not convinced about the "a human can say 'that's a little outside my area of expertise', but an LLM cannot." I'm sure there are a lot of examples in the training data set that contains qualification of answers and expression of uncertainty, so why would the model not be able to generate that output? I don't see why it would require an "understanding" for that specifically. I would suspect that better human reinforcement would make such answers possible.

[–] [email protected] 4 points 5 months ago

Because humans can do introspection and think and reflect about our own knowledge against the perceived expertise and knowledge of other humans. There's nothing in LLMs models capable of doing this. An LLM cannot asses it own state, and even if it could, it has nothing to contrast it to. You cannot develop the concept of ignorance without an other to interact and compare with.

[–] [email protected] 2 points 5 months ago (4 children)

I think where you are going wrong here is assuming that our internal perception is not also a hallucination by your definition. It absolutely is. But our minds are embodied, thus we are able check these hallucinations against some outside stimulus. Your gripe that current LLMs are unable to do that is really a criticism of the current implementations of AI, which are trained on some data, frozen, then restricted from further learning by design. Imagine if your mind was removed from all stimulus and then tested. That is what current LLMs are, and I doubt we could expect a human mind to behave much better in such a scenario. Just look at what happens to people cut off from social stimulus; their mental capacities degrade rapidly and that is just one type of stimulus.

Another problem with your analysis is that you expect the AI to do something that humans cannot do: cite sources without an external reference. Go ahead right now and from memory cite some source for something you know. Do not Google search, just remember where you got that knowledge. Now who is the one that cannot cite sources? The way we cite sources generally requires access to the source at that moment. Current LLMs do not have that by design. Once again, this is a gripe with implementation of a very new technology.

The main problem I have with so many of these "AI isn't really able to..." arguments is that no one is offering a rigorous definition of knowledge, understanding, introspection, etc in a way that can be measured and tested. Further, we just assume that humans are able to do all these things without any tests to see if we can. Don't even get me started on the free will vs illusory free will debate that remains unsettled after centuries. But the crux of many of these arguments is the assumption that humans can do it and are somehow uniquely able to do it. We had these same debates about levels of intelligence in animals long ago, and we found that there really isn't any intelligent capability that is uniquely human.

load more comments (4 replies)
load more comments (9 replies)
[–] [email protected] 49 points 5 months ago (4 children)

Who's ignoring hallucinations? It gets brought up in basically every conversation about LLMs.

[–] [email protected] 62 points 5 months ago (2 children)

People who suggest, let's say, firing employees of crisis intervention hotline and replacing them with llms...

[–] [email protected] 12 points 5 months ago

"Have you considered doing a flip as you leap off the building? That way your death is super memorable and cool, even if your life wasn't."

-Crisis hotline LLM, probably.

[–] [email protected] 10 points 5 months ago (1 children)

Less horrifying conceptually, but in Canada a major airline tried to replace their support services with a chatbot. The chatbot then invented discounts that didn't actually exist, and the courts ruled that the airline had to honour them. The chatbot was, for all intents and purposes, no more or less official a source of data than any other information they put out, such as their website and other documentation.

load more comments (1 replies)
[–] [email protected] 5 points 5 months ago

The part that's being ignored is that it's a problem, not the existence of the hallucinations themselves. Currently a lot of enthusiasts are just brushing it off with the equivalent of ~~boys will be boys~~ AIs will be AIs, which is fine until an AI, say, gets someone jailed by providing garbage caselaw citations.

And, um, you're greatly overestimating what someone like my technophobic mother knows about AI ( xkcd 2501: Average Familiarity seems apropos). There are a lot of people out there who never get into a conversation about LLMs.

[–] [email protected] 3 points 5 months ago

It really needs to be a disqualifying factor for generative AI. Even using it for my hobbies is useless when I can't trust it knows dick about fuck. Every time I test the new version out it gets things so blatantly wrong and contradictory that I give up; it's not worth the effort. It's no surprise everywhere I've worked has outright banned its use for official work.

load more comments (1 replies)
[–] [email protected] 27 points 5 months ago (6 children)

Honestly I feel people are using them completely wrong.

Their real power is their ability to understand language and context.

Turning natural language input into commands that can be executed by a traditional software system is a huge deal.

Microsoft released an AI powered auto complete text box and it's genius.

Currently you have to type an exact text match in an auto complete box. So if you type cats but the item is called pets you'll get no results. Now the ai can find context based matches in the auto complete list.

This is their real power.

Also they're amazing at generating non factual based things. Stories, poems etc.

[–] [email protected] 50 points 5 months ago (1 children)

Their real power is their ability to understand language and context.

...they do exactly none of that.

[–] [email protected] 18 points 5 months ago (1 children)

No, but they approximate it. Which is fine for most use cases the person you're responding to described.

[–] [email protected] 17 points 5 months ago (1 children)

They're really, really bad at context. The main failure case isn't making things up, it's having text or image in part of the result not work right with text or image in another part because they can't even manage context across their own replies.

See images with three hands, where bow strings mysteriously vanish etc.

load more comments (1 replies)
[–] [email protected] 19 points 5 months ago

So if you type cats but the item is called pets get no results. Now the ai can find context based matches in the auto complete list.

Google added context search to Gmail and it's infuriating. I'm looking for an exact phrase that I even put in quotes but Gmail returns a long list of emails that are vaguely related to the search word.

[–] [email protected] 10 points 5 months ago

Searching with synonym matching is almost.decades old at this point. I worked on it as an undergrad in the early 2000s.and it wasn't new then, just complicated. Google's version improved over other search algorithms for a long time.and then trashed it by letting AI take over.

[–] [email protected] 6 points 5 months ago

Exactly. The big problem with LLMs is that they're so good at mimicking understanding that people forget that they don't actually have understanding of anything beyond language itself.

The thing they excel at, and should be used for, is exactly what you say - a natural language interface between humans and software.

Like in your example, an LLM doesn't know what a cat is, but it knows what words describe a cat based on training data - and for a search engine, that's all you need.

[–] [email protected] 3 points 5 months ago

That's called "fuzzy" matching, it's existed for a long, long time. We didn't need "AI" to do that.

[–] [email protected] 7 points 5 months ago (1 children)

AI making things up? So someone finally invented an electronic replacement for politicians.

[–] [email protected] 2 points 5 months ago (1 children)

That's actually not a bad analogy. Politicians are rarely versed in topics they talk about and instead are just reiterating stuff experts told them. That's why lobbyism works as well as it does.

load more comments (1 replies)
[–] [email protected] 7 points 5 months ago

This is the best summary I could come up with:


All of Silicon Valley — of Big Tech — is focused on taking large language models and other forms of artificial intelligence and moving them from the laptops of researchers into the phones and computers of average people.

But if I type “show me a picture of Alex Cranz” into the prompt window, Meta AI inevitably returns images of very pretty dark-haired men with beards.

Earlier this year, ChatGPT had a spell and started spouting absolute nonsense, but it also regularly makes up case law, leading to multiple lawyers getting into hot water with the courts.

In a commercial for Google’s new AI-ified search engine, someone asked how to fix a jammed film camera, and it suggested they “open the back door and gently remove the film.” That is the easiest way to destroy any photos you’ve already taken.

An AI’s difficult relationship with the truth is called “hallucinating.” In extremely simple terms: these machines are great at discovering patterns of information, but in their attempt to extrapolate and create, they occasionally get it wrong.

This idea that there’s a kind of unquantifiable magic sauce in AI that will allow us to forgive its tenuous relationship with reality is brought up a lot by the people eager to hand-wave away accuracy concerns.


The original article contains 1,211 words, the summary contains 212 words. Saved 82%. I'm a bot and I'm open source!

[–] [email protected] 6 points 5 months ago (2 children)

it's only going to get worse, especially as datasets deteriorate.

With things like reddit being overrun by AI, and also selling AI training data, i can only imagine what mess that's going to cause.

load more comments (2 replies)
[–] [email protected] 2 points 5 months ago

The Chinese Room thought experiment is a good place to start the conversation. AI isn't intelligent, and it doesn't hallucinate. Its not sentient. It's just a computer program.

People need to stop using personifying language for this stuff.

[–] [email protected] 2 points 5 months ago

Holy shit. Dunning Kruger is fully engaged in these post comments

load more comments
view more: next ›